Unusual Stereochemistry in the Copper-catalysed Ring Opening of a Carbohydrate Oxirane with Vinylmagnesium Bromide

Carol Brockway, Philip Kocienski,* and Chandra Pant
Department of Organic Chemistry, The University, Leeds LS2 9JT

The oxirane ring of 4,6-O-benzylidene-1,5:2,3-dianhydro-d-allitol (1) opened regio- and stereoselectively at $\mathrm{C}-2$ with $\mathrm{Me}_{2} \mathrm{CuLi}$ and allylmagnesium chloride in the presence of catalytic amounts of Cul. With vinylmagnesium bromide, however, the ring opening of (1) was regioselective but a mixture of stereoisomers (10) and (12) was obtained corresponding to retention and inversion at C-2. A mechanism for the formation of the anomolous retention product (12) is proposed.

Comparatively few examples of nucleophilic ring opening of carbohydrate oxiranes by organocuprates are known. Good yields have been obtained with homocuprates $\left(\mathrm{R}_{2} \mathrm{CuLi}\right)$ when $\mathbf{R}=\mathrm{Me}^{1,2}$ but in general the reaction is not efficient owing to the sluggish reactivity of oxiranes. However, the coppercatalysed (CuI) ring opening of oxiranes by Grignard reagents ${ }^{3}$ is efficient and has been used successfully with carbohydrates. ${ }^{4-6}$ In all the cases examined the expected trans-diaxial ring opening of the oxirane occurred with inversion of configuration. ${ }^{7}$ As part of a projected synthesis of pseudomonic acid C we have examined the nucleophilic opening of the oxirane of 4,6-O-benzylidene-1,5:2,3-dianhydro-D-allitol (1) ${ }^{8}$ with various carbon nucleophiles. We now report some observations on the reaction of (1) with various organocuprates and draw attention to the anomolous stereochemistry obtained with vinylmagnesium bromide-CuI. Sinaÿ ${ }^{6}$ has recently applied a similar oxirane cleavage to the synthesis of pseudomonic acid C.

(2)

(5) $\mathrm{R}=\mathrm{H}$
(6)

(1)

Scheme 1. Ac =Acetyl; Tos = p-tolylsulphonyl. Reagents and conditions: a, $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{Et}_{2} \mathrm{O}, h \mathrm{v}$; b, $\mathrm{NaOMe} / \mathrm{MeOH} ; \mathrm{c}, \mathrm{PhCH}(\mathrm{OEt})_{2} / \mathrm{DMF}$, H^{+}; d, $\mathrm{TosCl} /$ pyridine; e, $\mathrm{NaOMe} / \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$

The oxirane (1) was prepared by a five-step sequence as shown in Scheme 1 starting with 2,3,4,5-tetra- O-acetyl- α-D-glucopyranosyl bromide (2). The photochemically induced reductive
debromination ${ }^{9}$ of (2) to give 1,5 -anhydro-D-glucitol tetraacetate (3) is noteworthy as the most efficient and reliable means for preparing (3). The conversion of (3) into (1) was then achieved by a modification of known procedures. ${ }^{8}$ By this route the highly crystalline oxirane (1) could be prepared on a large scale.

The oxirane (1) reacted with a large excess of $\mathrm{Me}_{2} \mathrm{CuLi}$ to give (7) in 64% yield but attempts to open the oxirane ring with functionalised carbon chains using the homocuprates prepared in the usual way ${ }^{10}$ from allyl-lithium, vinyl-lithium, or 1 -(trimethylsilyl)prop-1-enyl-lithium ${ }^{11}$ failed. Similarly, the higher order mixed cuprates ${ }^{12} \mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}(\mathrm{R}=$ allyl or vinyl) failed to react with (1). However, the copper-catalysed ring opening of (1) with allylmagnesium chloride in THF occurred rapidly at $-30^{\circ} \mathrm{C}$ to give (8) in $80-88 \%$ yield along with $c a .5 \%$ of (11). By contrast, addition of (1) to the reagent prepared from allylmagnesium bromide and $10 \mathrm{~mol} \%$ of CuI in THF at $-30^{\circ} \mathrm{C}$ gave only the bromohydrin (9) in 90% yield. The formation of (9) probably involved a Lewis acid-catalysed scission of the oxirane ring since (1) reacted rapidly with anhydrous MgBr_{2} in THF at $-30^{\circ} \mathrm{C}$ to give (9) in 90% yield.

Reaction of (1) with vinylmagnesium bromide and $10 \mathrm{~mol} \%$ CuI in THF at $-30^{\circ} \mathrm{C}$ gave two isomeric products [(10) and (12)] in 75% yield. The relative proportion of (10) and (12) depended on the age of the Grignard reagent. Freshly prepared reagent gave (10) and (12) in equal amounts, whereas week-old

(7) $R=M e$

(II)
(8) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(9) $\mathrm{R}=\mathrm{Br}$
(10) $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$

(12)

(13)

Scheme 2.
reagent which had been stored at $-40^{\circ} \mathrm{C}$ gave (10) and (12) in the ratio of $3: 1$. Isomer (10) was the product of normal transdiaxial ring scission with inversion of configuration at $\mathrm{C}-2$ whereas (12), with retention of configuration at C-2, was the product of apparent equatorial attack and as such is anomolous. Isomer (12) was probably the result of a two-step mechanism in which competing MgBr_{2}-catalysed scission of the oxirane ring gave the bromohydrin derivative (13) from which a second copper-catalysed displacement at C-2 by the vinyl group occurred with inversion of configuration to give (12) with overall retention. Hence the variation in product ratio can be attributed to the concentration of MgBr_{2} in solution: the reagent stored at $-40^{\circ} \mathrm{C}$ had deposited large amounts of MgBr_{2} thereby removing some of the reagent responsible for the formation of (12).

Support for the proposed mechanism was obtained by allowing (1) to react with MgBr_{2} to give (13) which was then added to vinylmagnesium bromide-CuI in THF at $-30^{\circ} \mathrm{C}$. Isomer (12) was isolated in 59% yield uncontaminated by (10). The substitution of a secondary bromide by an organocuprate is difficult; ${ }^{13}$ therefore it is likely that the oxygen atom at C-3 plays a major role in facilitating the reaction.

Experimental

T.l.c. (thin-layer chromatography) was carried out using Kieselgel GF_{254} and compounds were visualised with 5% $\mathrm{H}_{2} \mathrm{SO}_{4}$ in EtOH. Column chromatography was carried out on Kieselgel 60 ($230-400$ mesh). All reactions requiring anhydrous conditions were conducted in flame-dried apparatus under a static atmosphere of dry nitrogen. Organic extracts were dried over MgSO_{4} and evaporated at aspirator pressure using a Büchi rotary evaporator. Cuprous iodide was extracted overnight with tetrahydrofuran (THF) in a Soxhlet apparatus and then dried at 0.5 mmHg . It was thereafter stored in a desiccator in the dark. The Amberlite IR-120 resin was washed 3 times with dilute HCl followed by distilled water until the washings showed pH 7 . The resin was then washed with MeOH and $\mathrm{Et}_{2} \mathrm{O}$. Light petroleum refers to the fraction of b.p. $40-$ $60^{\circ} \mathrm{C}$.

MeOH was dried by distillation from $\mathrm{Mg}(\mathrm{OMe})_{2} . \mathrm{Et}_{2} \mathrm{O}$ and THF were dried with Na ; pyridine and dimethylformamide (DMF) were distilled from CaH_{2}.

Melting points were determined with a Reichert hot-stage microscope and are uncorrected. Chemical shifts are reported as δ values in p.p.m. relative to tetramethylsilane ($\delta 0.0$) as an internal standard. ${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded with a Perkin-Elmer R32 spectrometer operating at 90 MHz or a Bruker WH-400 spectrometer operating at 400 MHz . The terms $a x$ and $e q$ in the ${ }^{1} \mathrm{H}$ n.m.r. data denote the axial or equatorial protons respectively assigned from the lowest energy conformation. Carbon n.m.r. spectra were recorded with a JEOL FX90Q spectrometer operating at 22.5 MHz . Inverted signals obtained with a pseudo-INEPT pulse sequence are indicated by an asterisk. I.r. spectra were recorded with a PerkinElmer model 1420 spectrometer. Peak intensities were recorded as strong (s), medium (m), or weak (w). Optical resolutions were recorded with a Thorn Automation Type 243 polarimeter using 4 cm cells.

1,5-Anhydro-D-glucitol (4).-To a stirred solution of $0.192 \mathrm{M}-\mathrm{NaOMe}$ in $\mathrm{MeOH}\left(700 \mathrm{~cm}^{3}\right)$ was added at $0^{\circ} \mathrm{C} 2,3,4,6-$ tetra- O-acetyl-1,5-anhydro-D-glucitol ${ }^{9}$ (3) $(103 \mathrm{~g}, 0.310 \mathrm{~mol})$ in one portion. The cooling bath was removed and the mixture stirred at $20^{\circ} \mathrm{C}$ for 4 h . The mixture was passed through a 5 cm diameter column containing $250 \mathrm{~cm}^{3}$ of Amberlite IR-120 resin which was then washed with dry $\mathrm{MeOH}\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The combined filtrate and washings were evaporated and the
residue recrystallised from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ to give (4) $(43.5 \mathrm{~g}, 0.265$ $\mathrm{mol}, 85 \%$) as dense white prisms, m.p. $141-143{ }^{\circ} \mathrm{C}$ (lit., ${ }^{8} 139-$ $141^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{21}+41.6^{\circ}\left(c 1.6\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)\left\{\right.$ lit.,$^{8}[\alpha]_{\mathrm{D}}{ }^{20}+42.5^{\circ}(c$ $1-2$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ \}.

4,6-O-Benzylidene-1,5-anhydro-D-glucitol (5).-A solution of 1,5-anhydro-D-glucitol (10.5 g), benzaldehyde diethyl acetal ($17.5 \mathrm{~cm}^{3}$), and toluene- p-sulphonic acid monohydrate (0.5 g) in dimethylformamide ($24 \mathrm{~cm}^{3}$) was stirred at $20^{\circ} \mathrm{C}$ for 4 days. Ice-water was added and the product extracted into ethyl acetate. The organic layer was washed with brine, dried, and evaporated to a white solid which was recrystallised from ethyl acetate-light petroleum to give (5) ($17.8 \mathrm{~g}, 91 \%$) as fine white needles, m.p. $146-154^{\circ} \mathrm{C}$. Compound (5) did not crystallise well and tended to separate from solution as a gelatinous mass. Therefore, (5) was used in the next step without further purification. A sample recrystallised slowly from isopropyl alcohol had m.p. $163.7-164.4^{\circ} \mathrm{C}$ (lit., ${ }^{8}$ m.p. $164-165{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{21}$ $-22.1^{\circ}\left(c 0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ lit., $^{8}[\alpha]_{\mathrm{D}}{ }^{20}-21.2^{\circ}\left(c 0.5\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$.

2,3-Di-O-p-tolylsulphonyl-4,6-O-benzylidene-1,5-anhydro-Dglucitol (6).-Reaction of the diol (5) ($10.0 \mathrm{~g}, 40 \mathrm{mmol}$) and toluene- p-sulphonyl chloride ($42.5 \mathrm{~g}, 220 \mathrm{mmol}$) in pyridine (125 cm^{3}) for 4 days as described ${ }^{8}$ gave (6) ($17.6 \mathrm{~g}, 80 \%$) after recrystallisation from CHCl_{3}-light petroleum: it had m.p. 188$190^{\circ} \mathrm{C}$ (lit.. ${ }^{8}$ m.p. $185-189^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{21}-48.5^{\circ}\left(\mathrm{c} 1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ $\left\{\right.$ lit., ${ }^{8}[\alpha]_{\mathrm{D}}{ }^{20}-48.5^{\circ}\left(c 1.5\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$.

4,6-O-Benzylidene-1,5:2,3-dianhydro-D-allitol (1).-To a 2.33 m -solution of NaOMe in $\mathrm{MeOH}\left(60 \mathrm{~cm}^{3}\right)$ was added 2,3-diO - p-tolylsulphonyl-4,6- O-benzylidene-1,5-anhydro-d-glucitol (6) $(4.00 \mathrm{~g}, 17.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(140 \mathrm{~cm}^{3}\right)$. After 17 h at $20^{\circ} \mathrm{C}$ the mixture was washed with cold water ($3 \times 75 \mathrm{~cm}^{3}$), dried, and evaporated. The residue was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum to give (1) $(1.54 \mathrm{~g}, 97 \%)$ as fine white needles, m.p. $122-125^{\circ} \mathrm{C}$ (lit. ${ }^{8}$ m.p. $127-129^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{21}+33.5^{\circ}$ (c 0.56 in $\left.^{2} \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit.}^{8}{ }^{8}[\alpha]_{\mathrm{D}}{ }^{20}+35^{\circ}\left(c 0.5 \mathrm{in}_{\mathrm{CHCl}}^{3}\right.\right.$) $\} ; \mathrm{v}_{\text {max. }} .\left(\mathrm{CCl}_{4}\right)$ 3020,1215 , and $760 \mathrm{~cm}^{-1}($ all $) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.50-7.53$ and $7.32-7.41(2 \mathrm{H}$ and $3 \mathrm{H}, \mathrm{m}), 5.59(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 4.18(1 \mathrm{H}$, ddd, $\left.J_{g e m} 10, J_{6 e q, 5} 4.8, J_{6 e q, 3} 0.8 \mathrm{~Hz}, 6-\mathrm{H}_{\text {eq }}\right), 4.108\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m}\right.$ $\left.13.4, J_{1 a x, 2} 3.0 \mathrm{~Hz}, 1-\mathrm{H}_{a x}\right), 4.061\left(1 \mathrm{H}, \mathrm{ddd}, J_{g e m} 13.4, J_{1 e q, 2} 0.8\right.$, $\left.J_{1 e q, 3} 0.8 \mathrm{~Hz}, 1-\mathrm{H}_{e q}\right), 4.026\left(1 \mathrm{H}, \mathrm{dd}, J_{4,6} 8.8, J_{4,3} 1.2 \mathrm{~Hz}, 4-\mathrm{H}\right)$, $3.74\left(1 \mathrm{H}\right.$, ddd, $J_{5,6 a x} 10.2, J_{5,4} 8.8$, $\left.J_{5,6 e q} 4.8 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.65(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{g e m}=J_{6 a x, 5}=10.2 \mathrm{~Hz}, 6-\mathrm{H}_{a x}\right), 3.57\left(1 \mathrm{H}\right.$, dddd, $J_{3,2}$ $\left.4.8, J_{3.1 \text { eq }} 0.8, J_{3.4} 1.2, J_{3.6 e q} 0.8 \mathrm{~Hz}, 3-\mathrm{H}\right)$, and $3.44(1 \mathrm{H}$, ddd, $J_{2,3} 4.8, J_{2,1 a x} 3.0, J_{2,1 e q} 0.8 \mathrm{~Hz}, 2-\mathrm{H}$) (Found: C, $66.9 ; \mathrm{H}, 6.2$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$: C, $66.7 ; \mathrm{H}, 6.0 \%$).

If CHCl_{3} is used as solvent as prescribed, ${ }^{8}$ the reaction does not go to completion because CHCl_{3} reacts with NaOMe .

2-Deoxy-2-C-methyl-4,6-O-benzylidene-1,5-anhydro-D-altri-

 tol (7).-To a stirred suspension of $\mathrm{CuI}(1.2 \mathrm{~g}, 6 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ ($5 \mathrm{~cm}^{3}$) was added dropwise at $0{ }^{\circ} \mathrm{C} 9.0 \mathrm{~cm}^{3}$ of a 1.4 M -solution of MeLi in $\mathrm{Et}_{2} \mathrm{O}$. After 20 min , the oxirane (1) $(0.234 \mathrm{~g}, 1.0$ mmol) in THF ($10 \mathrm{~cm}^{3}$) was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 h whereupon saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was added. The organic layer was washed with water, dried, and evaporated. The residue was chromatographed on Kieselgel with EtOAc-light petroleum (1:9) as eluant to give $0.16 \mathrm{~g}(64 \%)$ of (7) after recrystallisation from EtOH: it had m.p. $110-$ $113{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-12.5^{\circ}\left(c 0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.45-7.52$ and $7.34-7.42(2 \mathrm{H}$ and $3 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})$, $4.31\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m} 10.5, J_{v i c} 5 \mathrm{~Hz}, 6-\mathrm{H}_{\text {eq }}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m} 12\right.$, $\left.J_{v i c} 3 \mathrm{~Hz}, 1-\mathrm{H}_{a x}\right), 3.98\left(1 \mathrm{H}\right.$, broadened dd, $J_{3,4} 3, J_{3,2} 3 \mathrm{~Hz}, 3-\mathrm{H}$), $3.91\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \beta} 10.5, J_{5,4} 10, J_{5,6 \alpha} 5 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.78(1 \mathrm{H}$, dd, $\left.J_{4,5} 10, J_{4,3} 3 \mathrm{~Hz}, 4-\mathrm{H}\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m} 10, J_{v i c} 10 \mathrm{~Hz}, 6-\mathrm{H}_{a x}\right)$, $3.53\left(1 \mathrm{H}, \mathrm{dt}, J_{g e m} 12, J_{\text {vic }} 1 \mathrm{~Hz}, 1-\mathrm{H}_{e q}\right), 2.32\left(1 \mathrm{H}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange), $2.04(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, and $1.19(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, 2-\mathrm{Me})$ (Found: C, 66.95; H, 7.2. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, 67.2; H, 7.2%).Reaction of the Oxirane (1) with Vinylmagnesium Bromide-CuI.-To a stirred suspension of $\mathrm{CuI}(0.25 \mathrm{~g}, 1.3 \mathrm{mmol})$ in THF $\left(8 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$ was added dropwise a solution of vinylmagnesium bromide in THF $\left(25 \mathrm{~cm}^{3}\right.$, ca. 1 m -reagent prepared in the usual way and stored at $-10^{\circ} \mathrm{C}$ for 24 h to precipitate as much MgBr_{2} as possible). After 5 min at $-30^{\circ} \mathrm{C}$, the oxirane (1) $(1.00 \mathrm{~g}, 4.3 \mathrm{mmol})$ in THF $\left(17 \mathrm{~cm}^{3}\right)$ was added and the mixture maintained at $-30^{\circ} \mathrm{C}$ for 1 h and $0^{\circ} \mathrm{C}$ for 2 h by which time t.l.c. analysis [$\mathrm{Et}_{2} \mathrm{O}$-light petroleum (1:1)] indicated the absence of (1). The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ ($50 \mathrm{~cm}^{3}$) and washed with $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{4} \mathrm{OH}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and the combined extracts dried and evaporated. The solid residue (0.87 g) was chromatographed on Kieselgel with $\mathrm{Et}_{2} \mathrm{O}$-light petroleum (1:3) as eluant to give 2-deoxy-2-C-vinyl-4,6-O-benzylidene-1,5-anhydro-D-altritol ($\mathbf{1 0}$) $(0.35 \mathrm{~g}, 1.33 \mathrm{mmol}, 31 \%)$, m.p. $52-53^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum); $[\alpha]_{\mathrm{D}}{ }^{22}-8.4^{\circ}\left(c 0.354\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. }}$ (film) $3459 \mathrm{~m}, 2880 \mathrm{~m}, 1450 \mathrm{~m}, 1370 \mathrm{~m}, 1100-1000 \mathrm{~s}$, 750 m , and $700 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.50$ and $7.35-7.41(2 \mathrm{H}$ and $3 \mathrm{H}, \mathrm{m}), 6.02\left(1 \mathrm{H}, \mathrm{ddd}, J 18, J^{\prime} 11, J^{\prime \prime} 7 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C} H\right), 5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.31$ [1 H, ddd, $J 18, J^{\prime} 1.5, J^{\prime \prime} 1.5$ $\mathrm{Hz},(H) \mathrm{HC}=\mathrm{C}], 5.25\left[1 \mathrm{H}\right.$, ddd, $J 11, J^{\prime} 1.5, J^{\prime \prime} 1.5 \mathrm{~Hz}$, $(H) \mathrm{HC}=\mathrm{C}], 4.31\left[1 \mathrm{H}, \mathrm{dd}, J_{g e m} 10, J_{v i c} 5 \mathrm{~Hz}, 6-\mathrm{H}_{e q}\right], 4.10(1 \mathrm{H}$, narrow m, 3-H), 4.08 ($1 \mathrm{H}, \mathrm{dd}, J_{g e m} 12, J_{v i c} 3 \mathrm{~Hz}, 1-\mathrm{H}_{a x}$), 3.95 (1 H , ddd, $\left.J_{5,4}=J_{5,6 a x}=10, J_{5,6 e q} 5 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.79(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $\left.J 12 \mathrm{~Hz}, 1-\mathrm{H}_{e q}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5} 10, J_{4,3} 3\right.$ $\mathrm{Hz}, 4-\mathrm{H}), 3.71\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m}=J_{v i c}=10 \mathrm{~Hz}, 6-\mathrm{H}_{a x}\right), 2.59(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H})$, and $2.03(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; $\delta_{\mathrm{c}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.3^{*}$, 136.6, 129.2, 128.3, 126.2, 117.4*, 102.0, 77.6, 69.3*, 69.1, 67.0, 66.1^{*}, and 45.1 (Found: $\mathrm{C}, 68.45 ; \mathrm{H}, 7.1 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C , 68.7 ; $\mathrm{H}, 6.9 \%$) and 2-deoxy-2-C-vinyl-4,6-O-benzylidene-1,5-anhydro-D-allitol (12), m.p. $128-130^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum); $[\alpha]_{\mathrm{D}}{ }^{22}-37.8^{\circ}\left(c 0.05\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$. (film) 3400 s , $2970 \mathrm{~s}, 2860 \mathrm{~s}, 1640 \mathrm{~m}, 1460 \mathrm{~s}, 1385 \mathrm{~s}, 1280 \mathrm{~m}, 1050 \mathrm{~s}, 1000-$ $860 \mathrm{~s}, 760 \mathrm{~s}$, and $700 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.52$ and $7.33-7.41(2 \mathrm{H}$ and $3 \mathrm{H}, \mathrm{m}), 5.86\left(1 \mathrm{H}\right.$, ddd, $J 18, J^{\prime} 9, J^{\prime \prime} 7.5$ $\left.\mathrm{Hz}, \mathrm{H}_{2} \mathrm{C}=\mathrm{C} H\right), 5.67(1 \mathrm{H}, \mathrm{s}, \mathrm{PhC} H), 5.19$ [1 H, ddd, $J 18, J^{\prime} \sim 1$, $\left.J^{\prime \prime} \sim 1 \mathrm{~Hz},(H) \mathrm{HC}=\mathrm{C}\right], 5.18\left[1 \mathrm{H}\right.$, ddd, $J 9, J^{\prime} \sim 1, J^{\prime \prime} \sim 1 \mathrm{~Hz}$, $(H) \mathrm{HC}=\mathrm{C}], 4.34\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m} 10, J_{v i c} 5 \mathrm{~Hz}, 6-\mathrm{H}_{e q}\right), 4.18(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3,2}=J_{3,4}=2 \mathrm{~Hz}, 3-\mathrm{H}\right), 3.93\left(1 \mathrm{H}\right.$, ddd, $J_{5,4}=J_{5,6 a x}=10$, $\left.J_{5,6 e q} 5 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.81\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m}=J_{v i c}=11 \mathrm{~Hz}, 1-\mathrm{H}_{a x}\right), 3.70$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m}=J_{v i c}=10 \mathrm{~Hz}, 6-\mathrm{H}_{\text {ax }}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J_{g e m} 11, J_{\text {vic }} 5\right.$ $\mathrm{Hz}, 1-\mathrm{H}_{e q}$), $3.63\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5} 10, J_{4,2} 2 \mathrm{~Hz}, 4-\mathrm{H}\right), 2.63(1 \mathrm{H}, \mathrm{m}, 2-$ $\mathrm{H})$, and $1.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{c}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.3^{*}$, 134.3, 129.1, 128.2, 126.2, 117.6*, 101.8, 80.4, 69.4*, 68.0, 66.1*, 65.8, and 45.1 (Found: $\mathrm{C}, 68.85 ; \mathrm{H}, 7.00 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C , 68.7; H, 6.9\%).

The 3,5-dinitrobenzoate derivatives of (10) and (12) gave m.p. $143.6-145.7^{\circ} \mathrm{C}$ and $153.5-154.5^{\circ} \mathrm{C}$ respectively (from $\mathrm{Et}_{2} \mathrm{O}$ light petroleum).

Reaction of the Oxirane (1) with Allylmagnesium Chloride-CuI.-To a stirred suspension of CuI (32 mg) in THF ($1 \mathrm{~cm}^{3}$) was added at $-30^{\circ} \mathrm{C}$ a solution of allylmagnesium chloride (15 $\left.\mathrm{cm}^{3}\right)$ prepared from $\mathrm{Mg}(4.78 \mathrm{~g}, 196 \mathrm{mg}$-atom $)$ and allyl chloride ($4.0 \mathrm{~cm}^{3}, 49 \mathrm{mmol}$) in THF ($50 \mathrm{~cm}^{3}$). To the resultant olive green solution was added the oxirane (1) ($200 \mathrm{mg}, 0.9 \mathrm{mmol}$) in THF ($2 \mathrm{~cm}^{3}$). The mixture was kept at $-30^{\circ} \mathrm{C}$ for 1 h after which t.l.c. $\left(\mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum, 1:1) showed no starting material and a single major product. The reaction mixture was poured into a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ with rapid stirring and $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$ was added. The organic layer was dried, evaporated, and the solid residue chromatographed on Kieselgel with $\mathrm{Et}_{2} \mathrm{O}$-light petroleum (1:4) as eluant to give 2-deoxy-2-C-allyl-4,6-O-benzylidene-1,5-anhydro-D-altritol (8) $(217 \mathrm{mg}, 85 \%)$ as white plates after recrystallisation from $\mathrm{Et}_{2} \mathrm{O}$ light petroleum; it had m.p. $65.2-68.2^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-16.1^{\circ}(c$ 0.018 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $3500 \mathrm{~m}, 3020 \mathrm{~m}, 2885 \mathrm{~m}, 1640 \mathrm{w}$,
$1230 \mathrm{~s}, 1120 \mathrm{~s}, 1100 \mathrm{~s}, 1060 \mathrm{~s}, 1000 \mathrm{~s}, 720 \mathrm{~m}, 700 \mathrm{~m}$, and 670 cm^{-1}; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.51$ and $7.35-7.42(2 \mathrm{H}$ and $3 \mathrm{H}, \mathrm{m}), 5.79\left(1 \mathrm{H}, 10\right.$-line symmetrical $\left.\mathrm{m}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 5.63(1$ $\mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.075-5.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 4.31\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }}\right.$ $\left.10.5, J_{\text {vic }} 5 \mathrm{~Hz}, 6-\mathrm{H}_{e q}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=J_{3,2}=3 \mathrm{~Hz}, 3-\right.$ H), $3.99\left(1 \mathrm{H}\right.$, dd, $\left.J_{g e m} 11.5, J_{v i c} 3 \mathrm{~Hz}, 1-\mathrm{H}_{a x}\right), 3.92\left(1 \mathrm{H}\right.$, ddd, $J_{5,4}$ $\left.10.5, J_{5,6 a x} 10, J_{5,6 e q} 5 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.725\left(1 \mathrm{H}\right.$, dd, $J_{4.5} 10, J_{4,3} 3 \mathrm{~Hz}$, $4-\mathrm{H}), 3.72\left(1 \mathrm{H}\right.$, dd, $\left.J_{g e m}=J_{\text {vic }}=10 \mathrm{~Hz}, 6-\mathrm{H}_{a x}\right), 3.65(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 11.5 \mathrm{~Hz}, 1-\mathrm{H}_{e q}$), $2.21-2.42(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right), 2.31(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$, and $1.91-1.97(1 \mathrm{H}, \mathrm{m}, 2-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.4^{*}, 136.0,129.2,128.3,126.2$, $117.0^{*}, 102.0,77.6,69.3^{*}, 68.35,67.3,65.8^{*}, 41.3$, and 34.1^{*} (Found: $\mathrm{C}, 69.85 ; \mathrm{H}, 7.45 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 7.3 \%$).

A 20 -fold scale-up of the reaction gave (8) $(4.16 \mathrm{~g}, 88 \%)$ and a second minor component which eluted from the Kieselgel column with EtOAc. The minor component $[210 \mathrm{mg}$ from 4.0 g of (1), 5% yield] was identified as ($2 \mathrm{R}, 4 \mathrm{R}, 5 \mathrm{~S}$)-2-phenyl-4-[(1S)-1-hydroxyprop-2-enyl]-5-hydroxy-1,3-dioxane (11), m.p. 90$91.5^{\circ} \mathrm{C}$ (fine needles from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum); $[\alpha]_{\mathrm{D}}{ }^{22}$ -64.7° (c $0.03 \overline{2}$ in $\mathrm{CH}_{2} \overline{\mathrm{Cl}}_{2}$); $\delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 138.9^{*}$, 137.4, 129.5, 128.7, 127.1, 117.5*, 101.8, 84.9, 74.1, 71.7*, and 63.4 (Found: $\mathrm{C}, 66.15 ; \mathrm{H}, 6.6 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.1$; H, 6.8%).

Acetylation of (11) in the usual way with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine gave an oily diacetate: $\delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.2-7.6(5 \mathrm{H}, \mathrm{m}), 5.97(1$ H , ddd, $\left.J 18, J^{\prime} 9, J^{\prime \prime} 7 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}=\mathrm{C} H\right), 5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{PhC} H), 5.37-$ $5.15\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right.$ and $\left.\mathrm{AcO}-\mathrm{CH}\right), 4.94\left(1 \mathrm{H}\right.$, ddd, $J=J^{\prime}=$ $\left.11, J^{\prime \prime} 6 \mathrm{~Hz}, \mathrm{AcOCH}\right), 4.34\left[1 \mathrm{H}, \mathrm{dd}, J 11, J^{\prime} 6 \mathrm{~Hz}, \mathrm{OCH}(\mathrm{H})\right]$, $4.01\left(1 \mathrm{H}, \mathrm{dd}, J 11, J^{\prime} 2.5 \mathrm{~Hz}, \mathrm{PhCH}-\mathrm{O}-\mathrm{C} H\right), 3.59[1 \mathrm{H}, \mathrm{dd}, J=$ $\left.J^{\prime}=11 \mathrm{~Hz}, \mathrm{OCH}(H)\right], 2.07(6 \mathrm{H}, \mathrm{s})$.

Treatment of the Oxirane (1) with Allylmagnesium Bromide.The oxirane (1) was added to allylmagnesium bromide- CuI in THF at $-30^{\circ} \mathrm{C}$ as described above for allylmagnesium chloride. After chromatography on Kieselgel, unchanged oxirane (1) (40 mg) was recovered along with 2-deoxy-2-bromo-$4,6-\mathrm{O}$-benzylidene-1,5-anhydro-D-altritol (9) $(240 \mathrm{mg}, 90 \%)$, m.p. $120-123^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum); $[\alpha]_{\mathrm{D}}{ }^{22}-0.6^{\circ}(c 0.016$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$. (film) $3350 \mathrm{~m}, 3020 \mathrm{~m}, 1225 \mathrm{~s}, 1120 \mathrm{~m}, 1100 \mathrm{~m}$, 1000 m , and $750 \mathrm{~s} \mathrm{~cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.15-7.7(5 \mathrm{H}$, $\mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 3.50-4.60(8 \mathrm{H}, \mathrm{m})$, and $2.90-3.20(1$ H, m) (Found: $\mathrm{C}, 49.1 ; \mathrm{H}, 4.85 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 49.5$; H , 4.8%).

Generation of (13) and its Reaction with Vinylmagnesium Bromide-CuI.-To a stirred suspension of $\mathbf{M g}$ ($51 \mathrm{mg}, 2.1 \mathrm{mg}$ atom) in THF ($1 \mathrm{~cm}^{3}$) was added dropwise 1,2-dibromoethane ($192 \mathrm{mg}, 1.02 \mathrm{mmol}$) in THF $\left(1 \mathrm{~cm}^{3}\right)$. After 30 min , the oxirane (1) $(245 \mathrm{mg}, 1.05 \mathrm{mmol})$ in THF ($3 \mathrm{~cm}^{3}$) was added at $0^{\circ} \mathrm{C}$ and the mixture stirred for 30 min by which time t.l.c. ($\mathrm{Et}_{2} \mathrm{O}$-light petroleum, 1:1) indicated complete conversion of (1). The mixture was then added dropwise via a syringe to a stirred mixture of $c a$. 1 M -vinylmagnesium bromide ($4 \mathrm{~cm}^{3}$) and $\mathrm{CuI}(76$ $\mathrm{mg}, 0.4 \mathrm{mmol}$) in THF at $-30^{\circ} \mathrm{C}$. After 1 h at $-30^{\circ} \mathrm{C}$ and 2 h at $0^{\circ} \mathrm{C}$, the mixture was poured into $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{4} \mathrm{OH}$ and worked-up as above to give (12) ($162 \mathrm{mg}, 59 \%$) identical with the sample previously prepared by t.l.c. and ${ }^{1}$ H n.m.r.

Acknowledgements

We thank the S.E.R.C. for a post-doctoral award (C. P.) and Dr. Brian Mann, University of Sheffield, for recording high-field n.m.r. spectra.

References

ID. R. Hicks and B. Fraser-Reid, Can. J. Chem., 1975, 53, 2017.
2 E. J. Corey, L. O. Weigel, A. R. Chamberlain, and B. Lipschutz, J. Am. Chem. Soc., 1980, 102, 1439.

3 C. Huynh, F. Derguini-Boumechal, and G. Linstrumelle, Tetrahedron Lett., 1979, 1503.
4 A. G. Kelly and J. S. Roberts, J. Chem. Soc., Chem. Commun., 1980, 228; M. P. Edwards, S. V. Ley, S. G. Lister, and B. D. Palmer, ibid., 1983, 630.
5 L. L. Klein, W. W. McWhorter, S. S. Ko, K.-P. Pfaff, and Y. Kishi, J. Am. Chem. Soc., 1982, 104, 7362.
6 J.-M. Beau, S. Aburaki, J. R. Pougny, and P. Sinaÿ, J. Am. Chem. Soc., 1983, 105, 621.
7 N. R. Williams, Adv. Carbohydr. Chem. Biochem., 1970, 25, 109.
8 E. Zissis and N. K. Richtmyer, J. Am. Chem. Soc., 1955, 77, 5154.

9 P. Kocienski and C. Pant, Carbohydr. Res., 1982, 110, 330.
10 G. H. Posner, Org. React., 1975, 22, 253.
11 R. J. P. Corriu, C. Guerin, and J. M'Boula, Tetrahedron Lett., 1981, 22, 2985.
12 B. H. Lipshutz, J. Kozlowski, and R. S. Wilhelm, J. Am. Chem. Soc., 1982, 104, 2305.
13 B. H. Lipshutz, R. S. Wilhelm, and D. M. Floyd, J. Am. Chem. Soc., 1981, 103, 7672.

